If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-12t-975=0
a = 16; b = -12; c = -975;
Δ = b2-4ac
Δ = -122-4·16·(-975)
Δ = 62544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{62544}=\sqrt{16*3909}=\sqrt{16}*\sqrt{3909}=4\sqrt{3909}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{3909}}{2*16}=\frac{12-4\sqrt{3909}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{3909}}{2*16}=\frac{12+4\sqrt{3909}}{32} $
| -16t^2+12t-975=0 | | x*7=13 | | 1x7=13 | | 30=p*30 | | 8=-3m+10 | | 2(x+8)=5(2x-1) | | 16b-5=7 | | 2^6x-2^3x=12 | | 3(u-17)=-9 | | 7x+4=8x+4 | | 1+14x+15x+5=180 | | 14+8p=9p | | x2-110x+3000=0 | | 9x+6+8x+17=180 | | 43=8+y/5 | | 7+3y=-5 | | 0=2x^2+10x+5 | | 50b-160=1000 | | -5/8+v=1/4 | | 10x-10+6x+14=180 | | 4(3.1+x)=38 | | 3=(x-5) | | 15x+12=117 | | 3y-6+y+52=8y+50-6y | | 4(x−2)+6x=10x−8 | | 2x+(x+5)=281 | | 2(3x-5)=-8x16 | | (q/2)+25=(100/q)+20 | | 3(5+x)-9=2(x-7)+x | | 458=44(5)+230x | | 1200=x^2+150x | | 20=3x+22 |